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Abstract As more organizations grasp the tremendous
benefits of Mobile Ad-hoc Networks (MANETS) in tactical
situations such as disaster recovery or battlefields, research
has begun to focus on ways to secure such environments.
Unfortunately, the very factors that make MANETS effective
(fluidity, resilience, and decentralization) pose tremendous
challenges for those tasked with securing such environments.
Our prior work in the field led to the design of BITSI — the
Biologically-Inspired Tactical Security Infrastructure. BITSI
implements a simple artificial immune system based upon
Danger Theory. This approach moves beyond self/non-self
recognition and instead focuses on systemic damage in the
form of deviation from mission parameters. In this paper, we
briefly review our prior work on BITSI and our simulation
environment, and then present the application of collabora-
tive filtering techniques. Our results are encouraging, and
show that collaborative filtering significantly improves clas-
sification error rate and response within the MANET envi-
ronment. Finally, we explore the implications of the results
for further work in the field, and describe our plans for new
research.

1 Introduction

Computer networking has become an enabling technology
for a wide variety of services. However, despite the apparent
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ubiquity of connectivity there still exist environments that
lack fixed infrastructure to support widespread computer to
computer interaction. For example, modern battlefield sys-
tems and disaster relief efforts both lack the infrastructure on
which much communication is based. In such environments,
connectivity is often provided by “mobile ad hoc networks”
(MANETS). Such MANETS are defined in RFC2051 [5] as
follows:

Definition 1 (MANET)[5] A MANET consists of mobile
platforms (e.g., arouter with multiple hosts and wireless com-
munications devices)-herein simply referred to as “nodes”—
which are free to move about arbitrarily. The nodes may be
located in or on airplanes, ships, trucks, cars, perhaps even on
people or very small devices, and there may be multiple hosts
per router. A MANET is an autonomous system of mobile
nodes. The system may operate in isolation, or may have
gateways to and interface with a fixed network.

In general, MANETS need to deal with different issues
than traditional wired networks. Because there is no cen-
tral infrastructure (and nodes must instead forward traffic
collaboratively), each node in the network must either ask
other nodes for a path to a destination on demand (reactive
routing) or maintain a local view of the network topology
for route calculation (proactive routing), which must be
frequently updated. These can lead to issues of route disrup-
tion when nodes are accidentally or purposefully sent incor-
rect information about the network topology, or when critical
nodes are disabled, even if temporarily. Furthermore, there
exist a myriad of other security concerns in the MANET
environment — for an overview, see [14] — brought about by
the lack of centralized management, shifting topology, and
bandwidth constrictions. As such, much work is needed if
MANETS are to be used for mission-critical functions in a
potentially-hostile environment.
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The remainder of this paper is structured as follows. We
first examine threats to MANETS and prior work in the field
of security for the MANET environment. With this under-
standing, we then provide a short overview of our Danger
Theory-inspired approach to MANET security. This frame-
work, known as the Biologically-Inspired Tactical Security
Infrastructure (BITSI), forms the basis for our experiments
using reputation and collaborative filtering. The experiments
are described in the next section, followed by a discussion of
the results. Finally, the paper concludes with a discussion of
the implication of these results to future work, and describes
our plans for new research.

2 MANET security in general

When one considers the general structure of a MANET, it
quickly becomes apparent that MANET security issues are a
superset of traditional wired security problems. Thus, in addi-
tion to traditional security vulnerabilities, a MANET must
also contend with the following challenges:

1. InaMANET, nodes cooperate to route traffic. Any rout-
ing algorithm must contend with nodes that may be under
an attacker’s control.

2. Bandwidthislocally shared and often highly-constrained
in a MANET. How can this congestion be handled while
simultaneously detecting nodes that are maliciously
flooding the network or dropping traffic?

3. Battery life is often a concern for MANET designers,
as roaming nodes often wish to act selfishly in order to
conserve power. Thus, CPU cycles and wireless power
management are extremely valuable commodities.

4. As the traffic observed by a node depends greatly on
network topology, it is difficult for systems to learn what
“good” traffic patterns look like, and what constitutes an
“attack”.

5. Nodes frequently enter or leave the network, causing fre-
quent changes in network membership and contributing
to localized changes in topology.

6. There is no “central authority” for network monitoring
and management, as the network can become disjoint at
any time.

Amongst these issues, some of the most commonly explored
themes in the literature are routing attacks and selfish node
behaviour. Solutions are broad, ranging from additional
encryption to virtual currency and reputation systems. In
terms of general security, IDS/IDP is more challenging in
the MANET primarily due to the frequent changes in
topology and the lack of a central authority.
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Collaboration between nodes is the obvious solution, and
has been examined by many other researchers. For example,
Huynh, Jennings, & Shadbolt [7] examine different types
of trust as a potential for improving the selection of part-
ner agents. Similarly, Sterne et al. [14] explore the bene-
fits of creating hierarchies within the nodes for intrusion
detection.

The underlying idea is relatively simple. When a node
finds another node misbehaving, it could tell other nodes
about the problem, and then they could all avoid the prob-
lematic node. The trouble with reputation-based approaches
is that they introduce new problems — a node could have
been misidentified as harmful, and would still be shunned,
or a malicious node could lie about having been hurt, poten-
tially crippling the network. The notion of trust, as distinct
from reputation was introduced to deal with this. Trust is
based on most of the same information as reputation, and
introduces new complications, such as whether or not to
re-trust nodes that have previously been defined as mali-
cious, and if so, when to do it, as well as what to do if mali-
cious nodes attempt to falsely accuse good nodes of being
bad.

An interesting exploration of these ideas is found in
Buchegger & Le Boudec [2]. In this paper, the authors
describe a system, CONFIDANT, which attempts to harden
reputation systems against deliberate misinformation by
looking for significant differences in reputation scores
between actors. Nodes whose reputation scores for others
were significantly different from the assessing node were
considered less trustworthy. Several others have used similar
techniques — for example, Liu & Issarny [9] and Zouridaki
[16]. However, this aspect of the work is not fully explored
in [2], as the experimental results are taken from a fairly sim-
ple congruency metric, as opposed to the more sophisticated
dynamic trust adaptation also discussed within the work.

As can be seen, MANETS present a difficult challenge to
those who would secure them. To this end, we have elected
to explore biology for inspiration.

3 AIS and danger theory

Itis our belief thata MANET security solution must be decen-
tralized, adaptive, and resilient to both failures and attacks.
Because of these requirements, a biologically-inspired
approach is attractive, as natural systems often display these
qualities. In particular, computer scientists have often been
tantalized by the concept of building an Artificial Immune
System (AIS), which can dynamically detect and adapt to
new threats.

Artificial Immune Systems (AIS) have held great
promise in the security field. Early work by IBM [8] and
Forrest [6] focused on systems that could detect “non-self”
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entities and respond to them. Despite a successful demonstra-
tion of the IBM system at the Virus Bulletin Conference in
San Francisco in 1997 [8] commercially available implemen-
tations of these concepts are generally weak at best.

Part of the challenge with the AIS model is that the human
immune system seems to be far more complex than simple
self/non-self discrimination. For example, many non-
self entities are accepted by the body (for example, paren-
terally-administered drugs) without provoking an immune
response. Clearly, there is more at work than just discrimi-
nating between the body and “everything else”.

In order to address this, Matzinger proposed that natural
immune systems respond not to just self/non-self, but also
detect danger [10]. When a cell dies via natural causes, well-
regulated biological pathways are followed; this is called
aptosis. Conversely, when a cell undergoes stress or trau-
matic destruction, certain danger signals are generated. This
is known as cellular necrosis. While this theory is somewhat
controversial among immuniologists [11], the paradigm does
turn out to be surprisingly helpful when constructing artificial
immune systems.

AIS research including aspects of Danger Theory (DT)
have begun to appear in the literature in the last few years. For
example, Aikelin et al. [1] proposed the use of DT as a miss-
ing component of traditional IDS/AIS systems. This early
work has sparked further exploration of such metaphors; for
example, Sarafijanovic & Le Boudec [13] designed an AIS
tightly linked to the biological immune system, using Danger
Theory.

Danger Theory focuses onidentifying and mitigating dam-
age to the system. Note that in many cases, it is not clear if
damage (for example, in the form of packet loss) is occurring
simply due to the relative position between nodes (two nodes
may share a poor link) or due to malicious activities. How-
ever, we note that DT is a moderator of our immune system
model — only when damage is discovered does the system
attempt to discern the underlying cause. The following list
outlines some common attack classes and our triggers within
DT:

— To protect against denial of service attacks (resource con-
sumption), the system checks the node for resource con-
straints, which can include CPU load, memory utilization
or network usage. Establishing thresholds (limits) on the
amount of resource consumed by a single client request
without triggering a reaction would not only ensure avail-
ability of service for other nodes, but can also help reserv-
ing enough resources to allow the node to further advance
towards general mission objectives.

— Routing attacks are searched for when the system notes
that packet loss is occurring. Note that such packet loss
can occur due to environmental conditions as well as
active attack. When routing errors are suspected (and

packet forwarding damage is detected) the system can
begin the process of determining the likely cause of
problems.

— Todiscover the presence of worms and viruses, the system
should be able to note the creation of new processes and
files, plus new outbound requests. However, none of these
are, at least directly, damage. Thus, from a pure DT per-
spective, detection will only begin if the worm/virus con-
sumes too many resources or triggers outbound traffic that
is deemed to be damaging. In our future work, our intent
is to apply a policy model to system calls, associating a
small level of “damage” to certain call sequences (akin
to behavioural virus detection). Using this approach, our
belief is that it should be possible to use a DT model for
remediation of the effects of malicious code.

Of course, there are many classes of attack that would not
trigger a purely-DT moderated system. For example, a user
whose password had been compromised and then used mali-
ciously would not be detected unless the attacker carried out
a “damaging” action. Similarly, attacks where the damage is
not immediately critical to the mission (such as data exfiltra-
tion) will not be detected using a system wholly based upon
DT. As such, we argue that DT should be just one component
in a larger system. This larger system is discussed below.

3.1 BITSI: overview

Given the security challenges of the MANET environment,
our work has focused on applying theoretical concepts to
real-world attacks. In particular, we have begun development
of BITSI, which leverages different aspects of biological
systems.

The underlying architecture of BITSI is quite straightfor-
ward. Each node of the MANET has a BITSI agent on it.
This agent resides in a local trusted component at each sys-
tem and monitors the behaviour of the node, as well as the
traffic which is forwarded on the local network. From such
a vantage point, BITSI collaboratively works to respond to
different attacks.

In terms of attacks, our vision for BITSI is one of mission
enablement. That is, BITSI accepts that some attacks will
succeed on the network, but aims to mitigate their effects
sufficiently to ensure mission continuity. This approach is
different from (though synergistic with) more traditional
remediation attempts, whose goal is to stop all attacks.

Remediation of attack effects is another important area
of study. Softer security responses move away from binary
“g0/no-go” decisions toward responses which represent more
of a continuum, such as rate-limiting traffic or selectively
blocking connections from a particular application. By
dynamically identifying and monitoring critical operations
and performance requirements for specific contexts and
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missions, BITSI can focus on securing the core operation
of the system, as opposed to trying to address the possibly
unbounded space of all possible attacks.

The challenge with such a “live and let live” approach
is that it ignores the underlying sensitivity of computer data.
Clearly, some information in a military environment has long
term value and high criticality; others have no long term
value, but are, at the short time scale, critical (an example of
this might be a session key for a temporary encrypted connec-
tion). Given that this information could be extremely small
in comparison to its importance (such as a 128-bit encryp-
tion key), it is very difficult to use biological techniques to
prevent data exfiltration attacks, as there is no obvious bio-
logical analogy. However, this is not necessarily a fatal flaw
in our approach; first, it seems unlikely that BITSI would
be the only protective measure on a system; second, given
the size of the problem space, a robust solution for part of
the space is of value. BITSI has been designed with this in
mind, and is capable of being integrated with other content-
management/IDS tools.

4 Experimental design and goals

The work described in this paper applies collaborative
filtering techniques in a Danger-Theory driven environment.
It shows that while a node alone can detect and block attack-
ing nodes, collaboration between nodes can, in many circum-
stances, improve detection even in the face of significantly
noisy data. Furthermore, if nodes that have certain charac-
teristics in common collaborate, and those characteristics are
related to their vulnerability to attack, the results will improve
still more.

These tests abstract many of the characteristics of the
MANET, and were therefore carried out in a purpose-built
simulator. They assume a low-mobility, tightly packed clique
of nodes that are fully connected. We examine results for a
subset of the nodes, which we call servers. One or more
client nodes send “bad” messages representing a resource
consumption attack, which cripples the receiving server for
a short period, causing it to drop all subsequent messages
until the bad message is processed. The server uses BITSI
and the information shared by nodes to decide whether to
block future messages from attacking nodes. The simulation
includes a variable percentage of false positive and false neg-
ative values, which are used in this decision.

Here we introduce the notion of attributes. These attributes
represent functions, qualities, services or software which
each node possesses. For example, one attribute may rep-
resent the operating system used, and another may indicate
the version of the Apache server the node is running. It is our
contention that nodes that share many of the same attributes
are more likely to be vulnerable to the same attack. Thus, we
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propose to use these attributes to customize the reputation
information.

In order to test the effectiveness of BITSI, we examined
two different scenarios. In the first scenario, we simulated a
MANET network of 35 nodes, out of which 6 were assigned
the role of servers that handled requests from the other nodes.
One of the non-server nodes was assigned to be an attacker
that only sent maliciously formed requests to the servers.
Each discrete time step in the simulation was assumed to
be enough for the servers to handle all legitimate requests
received in that step. Three of the servers had an attribute
which made them vulnerable to attack, which meant that
processing an attack packet prevented servicing of all other
packets within that time step. Each non-server (client) node
sent 4 requests to randomly-selected servers each time step.
We assumed that there was no loss of requests in the network.

Each node in the network has a BITSI client on it. This cli-
ent, which is DT-inspired, classifies packets based upon their
impact on the system. Thus, only packets that are serviced are
evaluated by BITSI. Furthermore, we assumed that this clas-
sifier misclassifies “good” packets with probability Py, and
“bad” packets with probability Pr,. The BITSI agent stores
the classification of the last ten packets received from each
node. Once this buffer is full, the oldest entry is replaced with
the status of the most recent packet received. BITSI keeps
such a buffer for each client encountered on the network.

Every time a packet is serviced, BITSI evaluates the con-
tents of the buffer to determine if a particular client should
be classified as an attacker and blocked for some time, .

In our prior work [3], we used a SoftMax learning strat-
egy [15] where the index of damage was calculated by the
following equation:

el Xbenign

T ey

>
en‘(Xbenign + Xmalicious)

Calculation of the Damage Index

In this equation, e is Euler’s number (~ 2.72), n is a learn-
ing coefficient, Xbenign and Xmalicious are the numbers of
requests classified as benign and malicious, respectively, in
the buffer, and 7 is the decision threshold. If the inequality
is true, the sending node is deemed to have caused definite
damage, and some remedial action may be taken. For an
examination of our previous results in this work, see [3]. In
our current simulation the threshold was set to 0.5.

Once a node was identified as malicious, its “bad reputa-
tion” counter local to the server was incremented and requests
from the node were blocked for an exponentially increasing
number of steps based on the counter. The local “bad reputa-
tion” counter essentially served as an indicator on how many
times the sender of the currently evaluated request tried to
attack the server.
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4.1 Scenario 1: results

One challenge with the work is determining how to
quantify our results; that is, how can we determine how
“well” BITSI is functioning? In traditional IDS/IDP systems
it is relatively easy to measure the Type I and Type II error
rates. However, BITSI is not a classifier per se, so it does not
quantify traffic in this manner. Instead, BITSI will — in the
most general description — attempt to preserve certain prop-
erties of the macroscopic system by reconfiguring nodes to
defend themselves, sometimes at the cost of local optimality.

In similar work (for example, routing protocols) research-
ers have attempted to quantify “goodput” in the system; that
is, the amount of legitimate requests serviced under certain
conditions. However, in a real system, this is not something
that can be easily done, as there is no clear cut delineation
between “good” and “bad” in a system that is overcommitted
in terms of resource consumption.

For the purposes of this paper, consider the following types
of traffic:

— A: Legitimate traffic sent by nodes

— B: Legitimate traffic serviced by nodes

— C: Malicious traffic sent by attackers

— D: Malicious traffic serviced by vulnerable nodes

— E: Malicious traffic serviced by immune nodes or lost in
the network

It should be noted that when a vulnerable node services a
malicious attack, it becomes unable to service further traffic
for the duration of the current time step. Conversely, when
an immune node services malicious traffic, the node suffers
no ill consequences.

Using these traffic designations, we could argue that the
“optimal” strategy is where A = B — that is, where all traf-
fic sent by “good” nodes is serviced. This approach makes
sense in a simple system where there is a clear delinea-
tion between attack packets and benign traffic. However,
things are significantly more complex when one considers
systems that are naturally resource constrained (such as a
MANET). In such a system, any traffic can cause some level
of damage, as servicing one packet virtually guarantees that
some other packet will not be serviced. In such a case, more
complex metrics will need to be created. However, in this
paper, as we are considering simple direct attacks, Qual-
ity of Service (QoS) is defined as 100 x % Thus a QoS
of 100% means all “good” traffic is serviced. This metric
provides a balance between penalizing the system for false
positives and rewarding the system for servicing legitimate
requests.

Figure 1 shows a plot of the percentage of legitimate ser-
vices handled by the system at a misclassification rate (Py,
and Py of 25%, with a threshold 7 of 0.5. In this graph, the

Threshold =05
25% misclassification error rate

o
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Legitimate Requests Serviced (%)

0 50 100 150 200 250 300 350 400 450 S00
Time Steps

Fig. 1 QoS for various values of Eta (7). Note how the system becomes
too reactive as Eta decreases

responsiveness of the system (1) was varied from 0.1 to 1.0.
As can be seen, the system correctly adapts to the attackers
for high values of . However as 1 decreases (corresponding
to a more reactive system), the response to misclassifications
begins to dominate, and the system begins to block legitimate
traffic.

4.2 Scenario 2

In the second simulation, we introduce the idea that nodes
have attributes known to all other nodes in the group. These
may be given in a table before the start of a mission, and could
be updated periodically. We use these attributes to improve
the recommendations from other nodes. For this simulation,
we model 8 servers, each of which has a different set of
three attributes. These servers provide service to 30 clients,
of which 28 are benign. After timestep 50, the 2 attacking
nodes begin to mix attack traffic in with their benign pack-
ets with probability p. However, a server is only vulnerable
to a particular attack if it has the right attributes. Thus, two
servers are vulnerable to attack A, two to attack B, two to
both attacks, and two are invulnerable. Thus, at every time-
step the attacker may attack one randomly chosen server,
but only those with a particular attribute set will experience
damage.

In this system, every time damage is detected, the server
increments its local opinion regarding each client. Further-
more, after receiving an attack packet, the rest of the mes-
sages sent to that server during that timestep are dropped.
A node’s negative reputation gets incremented by one unit
if the server identifies it as the source of damage. Other-
wise, for each message received within that time step, each
node gets 1/n units of blame, where n is the number of
messages processed during that timestep. The ratio between
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accurate identification, where one node receives the entire
blame for damage, and inaccurate identification, where all
nodes sending traffic receive some portion of the blame is
set by the misclassification rate, P,,. The false positive rate
(Prp) controls the frequency with which benign messages are
considered to be harmful. These are treated just like attack
messages.

For the purposes of this scenario, the blame simply
increases as time goes on, rather than using the windowing
scheme that was used in scenario 1.

Individual blame (primary reputation) is useful, but col-
laborating with others in a reputation scheme has been found
to increase effectiveness [2]. In this paper, we wish to look at
the effects of secondary reputation independent of primary
reputation, leaving aside the issue of combining the two.

To look only at the secondary reputation, we introduce
a new server, Spew, which is only vulnerable to attacker 1
and that has no prior knowledge of the behaviour of any
of the clients. Spew then determines the “global” reputation
of all clients using two different techniques. First, it simply
averages the opinion of all the servers in the system, as in
Equation 2.

O(Shew) =

i1 O(S}
szln ( l) (2)

Calculation of Similarity (unweighted)

Second, it calculates a weighted average based upon the
Euclidean distance in attribute space it has to each other
server, using Equation 3.

> i1 O(SF).E(SnewS)

O(Shew) = . (3)
Calculation of Similarity (weighted)
where
\/27:1 (Sr];ew - Sl])Z
E(SpnewSi) =1— 4)

Ja
and a represents the total number of attributes for nodes in
the system

Calculation of Node Weights

Thus, it will weight servers that have similar attributes to
it more highly than those that are highly dissimilar.

To accommodate for randomness in the simulation (stem-
ming from the selection of servers for requests), each scenario
was run 50 times and the outcomes averaged.

4.3 Scenario 2: results

Figure 2 shows the reputation of the clients using both a sim-
ple and weighted average, from the perspective of Spew,
where the underlying classifier is 100% accurate and the
attacker sends an attack at every timestep. The upper graph
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Fig. 2 The weighted and average reputation of the client nodes as a
function of time. Note how the attackers are clearly outliers from the
main cluster. The same data, shown as measure of how far each node is
from the mean in terms of the standard deviation

shows the raw reputation scores. The lower graph shows the
difference, in units of standard deviation, of each attacking
node from the average reputation score.

Figure 3 shows the reputation for two different false
positive and misclassification rates in terms of deviations
from the sample mean. In this graph — and all subsequent
ones - there is a 1 in 5 chance that a particular packet sent by
the attacker is an attack.

The graph on the upper side of this figure was created
using a 5% false positive rate, and a 20% misclassification
rate. The graph on the lower was created using a 20% false
positive rate and an 80% misclassification rate. In both cases,
Snew rates attacker 1 as a significant outlier from the mean.
Similarly, attacker 2, which is not capable of causing damage
to Spew lies one standard deviation from the mean, and may
be treated as benign by Spew -
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Fig. 3 The distance from the mean of the attacking nodes for weighted
and simple averaging. In the upper graph, false positives are 5% and
the 20% and the misclassification rate (that is, the occurrences where
BITSI detects damage but is unable to determine with certainty which
traffic flow caused it) is 80%

4.4 Scenario 3

Similarity weighting as shown in scenario 2 allows a server
to pay more attention to the opinions of nodes that are similar
to it. When there are more attributes or more values for each
attribute, the advantage is reduced due to more noise in the
system. To counteract this, the attributes should be weighted
by importance. This will not always be possible, but if a
server perceives damage, and suspects a certain node, it can
poll others to help decide if the node is truly dangerous. If the
damage is a buffer overrun, for example, having the vulner-
ability in question on the host, and sharing the same Oper-
ating system is clearly more important than the presence of
an unrelated scripting language on the host. Thus, the weight
(importance) given to each attribute should be varied with
respect to type of damage experienced.

In this scenario, Spew perceives an attack and requests
reputations from the other nodes to help determine whether
or not to block the attacker. BITSI determines that there is a
probability, p, that the attack was related to attribute a — for
example, its database server. It then weights attribute a more
heavily when calculating its similarity to other nodes. In the
results below, we weighted every attribute by 1, except the
relevant attribute which had a weight (W,,) of 5. Future work
will be needed to determine appropriate attribute weights; in
this work, the ratio of 5 to 1 is chosen arbitrarily.

3 SV — 55). W, )2
V2 (W)?

Calculation of Weights (weighted by attribute)

Note that in this equation, all distances are normalized on
a scale from O to 1. A distance of 0 would indicate that node
being compared is identical to the current node (and therefore
contributes its full weight to the calculation). Conversely, a
distance of 1 means a node is completely unlike the current
node, and will contribute nothing to the calculation.

In this case, the opinions of servers that have the same
database server are more heavily weighted than other serv-
ers. Again, each was run 50 times and averaged.

E(Spew) =1—

&)

4.5 Scenario 3: results

Figure 4 shows a situation similar to that of scenario 2 in
which misclassification is at 50% and there are 10 servers
rather than 8. In (a) and (b), half of the attributes are the same
as Spew- This corresponds to a case where for each attribute
there are two equally likely choices. The thickest line shows
the results for attribute weighting, the narrower line shows
similarity-based averages and the dashed line shows simple
averaging. In (a) there are three attributes, and in (b) there
are 25. In the first case, similarity weighting and attribute
weighting give approximately equivalent results, and both
are able to distinguish the node that is dangerous from one
that is less likely to be harmful. In (b), with more attributes,
the similarity weighting is overwhelmed by the 24 random
attributes that have no bearing on the attack, so its results are
similar to those obtained using average reputation. All repu-
tation algorithms examined can distinguish the attack nodes
from the non-attack nodes, but in the attribute weighted case
Snewcan tell that attacker 1 is more likely to be a threat to it
than attacker 2.

Figure 4(c) and (d) have the same parameters as (a) and
(b), except that each attribute has only a 20% chance of
being similar to Spew. This represents a situation when there
are five equally likely choices (or the equivalent with some
choices being less likely) for each attribute. Thus, there are
fewer nodes that are like Spew and so averaging will tend
to give results not suited to Spew. In (c), with only three
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Fig. 4 The distance from the mean of the attacking nodes for attribute weighting, similarity weighting and simple averaging

attributes, the node nor harmful to Spew has the worst
reputation under the simple average, while for weighted aver-
aging the two attacking nodes have about equal reputation. In
(d) we show the situation with 25 attributes. In this case, attri-
bute weighting most accurately represents the relative danger
posed by each attacker.

5 Discussion

As illustrated in Fig. 1, the problem with a simple local
reputation system is that the measurement of “badness” is
not relative — that is, when the system becomes too respon-
sive to perceived attacks, the system has no external measure
of badness for comparison. Thus, as ¢ approaches infinity,
all nodes are blocked. However, such fixed level approaches
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ignore one of the fundamental properties of the system: each
node’s reputation is not static, but can be compared to that
of their peers. Thus, we offer two different approaches with
results shown in Figs. 2, 3 and 4.

First, in Fig. 2, we show how a system that has a perfect
classifier functions. Here, only the attacking nodes acquire
bad reputation from its peers. Given a perfect classifier, there
is obviously a trivial solution to the problem of detecting
attackers. Despite this, the graphs in Fig. 2 are worthwhile
studying, as they tell us something important about the sys-
tem’s macroscopic properties. Note how the collaborative
filtering approach forces the most dangerous client (from the
perspective of Spew) to have the highest negative reputation.
The other attacker still has a reputation higher than the mean.
This is reasonable, as Spew) is influenced primarily by the
opinion of the servers most like it. Conversely, in the simple
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Table 1 Summary of the end data points in Figs. 2, 3 and 4

Deviations from the mean 50% Alike, 3 Attributes

50% Misclassification, 5% False positives

20% Misclassify. 80% Misclassify 50% Alike 20% Alike
Attributes
5% False pos. 20% False pos. 3 25 3 25
Average
Node 1 3.29 2.09 3.21 3.11 0.95 1.01
Node 2 324 2.47 3.11 3.28 4.72 4.63
Similarity weighted
Node 1 4.04 2.11 4.06 3.23 2.18 1.25
Node 2 1.73 0.99 1.41 3.09 2.89 435
Attribute weighted
Node 1 _ _ 428 3.89 2.81 243
Node 2 1.69 2.53 2.58 3.51

average, both attackers are closer to the mean, and would be
treated identically by Spew).

Figure 3 illustrates the real benefit of our approach. Despite
the fact that attackers only attack 20% (on average) of the
time, and the classifier is very unreliable (5% and 80% error
rate, respectively) the node that Spew is vulnerable to is
clearly an outlier. The work described above is very prom-
ising, but requires work in several areas. In particular, we
should consider the actual knowledge of the network by any
node and the challenge of deliberate miscommunication by
attacker nodes.

Figure 4 shows that when under attack, anode can get more
information by weighting relevant attributes. This makes
intuitive sense, as the node’s “view” of the universe is most
influenced by those nodes likely to have a similar experience.

6 Related work

While our prior research [3], showed promise, it was sensitive
to classification error rate — as the classifier became more
unreliable, the performance of the overall system declined.
Furthermore, each node had to experience damage first-hand
to adjust its opinion of remote nodes. Thus, in this work, our
goal was to allow nodes to learn from each other’s experience,
by creating a reputation system.

Several researchers have tackled the reputation problem in
MANETS, but in each case, there are significant differences
between their approach and ours. For example, there are sys-
tems that essentially apply equal weight to each opinion (see,
for example [12]). This can make sense if all players are
trusted, and if the systems use equivalent methods for intru-
sion detection. However, in a Danger Theory-inspired sys-
tem, differences in hosts’ vulnerabilities change their view
of the system.

Another interesting approach is to consider how much
another node’s view of the world is similar to your own [2].
Thus, if the opinions of Node B are very similar to those of
Node A in general, Node A will tend to provide higher weight
to its opinions. This approach is interesting for a DT-inspired
system, as nodes with similar vulnerabilities may have fairly
similar views of global reputation. In the long term, it would
be interesting to implement this technique using BITSI and
compare results.

Our implementation is different from these previous
systems as it focuses on differences in the nodes themselves
— that is, the greater the similarity between two nodes’ con-
figuration, the larger the influence each has on the other’s
reputation. As we have demonstrated in this work, a simi-
larity metric based on the attributes of the nodes provides a
better signal-to-noise ratio for defenders, and outperforms a
simple average.

7 Future work

The assumption of global knowledge is clearly inappropri-
ate for the MANET environment. Even when the network is
fully-connected, it is not possible to make decisions based
upon exact knowledge of the current state of the system. In
the real world, however, the situation is significantly worse,
as the network is unlikely to be fully connected. Thus, it is
imperative that BITSI can function with only partial knowl-
edge.

Fortunately, the fragmented nature of the MANET is not
an insurmountable problem. As connectivity is required
between two nodes for an attack to take place, the current
connected system can be treated as the global space. In addi-
tion, it is not clear that a global view of the network helps.
For example, the local reputation of a misbehaving node in
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an isolated cluster is of more importance than the reputation
more widely among nodes that cannot have been affected by
it. Our sense is that local machines could identify and block
damaged/malicious systems, and provide warnings to new
nodes when the network topology changes.

The challenge of targeted attacks is a difficult one, though
it is fortunately not without precedent in the literature. In
any reputation-based system, if the number of attackers is
large, it might be possible to skew results, if attackers col-
laborate. In addition, any system has to be careful to avoid
strong positive feedback, where a series of false positives can
cause a cascade of negative reports about a node.

In both these instances, one attractive approach is to con-
serve the reservoir of negative reputation and have nodes
“own” the negative reputation they distribute. In [4], a system
is proposed where any node may revoke another’s network
access... by voluntarily giving up its own. The work is inter-
esting, as it provides strong defence to Byzantine attacks —
an attacker can only use the system to remove one defender
at best. Our intuition is that a modified version of this system,
where one owns the bad reputation one distributes, could also
be effective; this is left as an avenue for further research.

The most general way to consider our system is that the
decision to block and the duration of a block are function of
local knowledge and group knowledge. The primary differ-
ence between a global reputation system and collaborative
filtering is that a collaborative approach weights the opin-
ion of neighbours based upon their similarity to us. In future
work, we foresee two primary research areas here: the exact
nature of the classifier/blocking function, and the correct way
to handle similarity metrics.

Determining the most effective form of the functions used
will require an empirical approach. Furthermore, it seems
likely that the optimal strategy will depend on the underlying
values of Py, and Py, and the attack strategy implemented.
Thus, our intent is to explore the solution space and deter-
mine if there is a set of functions that performs acceptably
under a wide range of circumstances.

In terms of determining “likeness” to neighbours, there are
a significant number of research avenues. For example, the
metric for similarity may depend greatly on the type of attack
encountered. If the attack under consideration is on a web
server, for example, over port 443 (HTTPS), it makes sense
to weight other web servers that support HTTPS far more
highly than others. Thus, determining similarity depends on
context (what attack is being considered right now) and attri-
butes (what is the machine under consideration). If we were
to naively assign attributes to each machine, it is possible
to calculate the Euclidean distance between their attributes;
however, this ignores the context issue outlined above. Once
again, determining the optimum distance metric to use is
a matter of considerable interest, and is an area of future
research.
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8 Conclusions

In this paper, we have outlined a Danger Theory based Arti-
ficial Immune System for the MANET environment. In par-
ticular, we have shown how such an approach can have quite
desirable properties macroscopically, by focusing on high-
level needs. We then showed how a simple reputation system
can be improved in this environment by considering the expe-
riences of similar systems.

Overall, the results provided are very encouraging. By
focusing on high-level systemic properties, the resilience of
the system is protected, and the overall mission enabled. Fur-
thermore, the system does not attempt to impute motive to
actions; instead, when using Danger Theory, the results of
any action are analysed. Finally, the system can operate syn-
ergistically with existing techniques (such as signature-based
IDS solutions) provided some estimate of the false positive
error rate is known.

There remains a large amount of work to conduct before
BITSI is ready for deployment. The two primary areas of
concern are the lack of global knowledge and dealing with
attackers who attempt to fool the system. Our hope is to con-
tinue to expand the models underpinning BITSI to deal with
these circumstances.
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